早期脑损伤(EBI)诱导的神经元凋亡是导致动脉瘤性蛛网膜下腔出血(ASAH)并发症的主要诱因,并可能会增加ASAH患者的死亡率。c-jun N-末端激酶(JNK)已被证实是EBI诱导的细胞凋亡的启动子,然而其机制尚未完全阐明。现分享一篇体内转染(entranster)与大鼠早期脑损伤诱导的神经元凋亡研究的文献,以供参考。
阅读更多 »体内转染(entranster)与大鼠脑外伤后大脑皮层环状RNA变化研究
创伤性脑损伤(TBI)可分为初始损伤和继发损伤两个阶段。继发性损伤可使初始损伤恶化,导致炎症反应增强和细胞死亡增加,导致神经功能缺陷。初始损伤不能改变,但通过有效的治疗可以减轻继发损伤。虽然在过去几十年里已经做出了许多努力,但脑外伤仍然是一种严重的疾病,死亡率和发病率都很高,而且现有的治疗策略也很有限,这给社会和家庭带来了严重的经济负担。脑损伤的复杂生物学机 …
阅读更多 »体内转染(entranster)与半滑舌鳎脾脏巨核细胞病毒诱导蛋白和病毒感染所必需的细胞过程
虹彩病毒科是一个双链、二十面体结构的DNA病毒科,能感染昆虫、两栖动物、鱼类和爬行动物等许多无脊椎动物和脊椎动物。目前,虹彩病毒科分为五个属,其中三个属是从水产养殖物种中分离出来的,即蛙病毒、淋巴孢子病毒和巨核细胞病毒。据了解,30多种养殖鱼类(特别是桂鱼、大黄鱼、石鲷、红海鲷、鲈鱼和胸膜吸虫)都会感染巨链病毒。巨细胞病毒感染可导致30%至100%的死亡率, …
阅读更多 »体内转染与膜联蛋白A7和大鼠继发性脑损伤研究
谷氨酸兴奋性中毒参与了脑出血(ICH)引起的继发性脑损伤(SBI)。突触体相关蛋白23(SNAP23)和SNAP25分别参与突触前谷氨酸的释放和突触后谷氨酸受体(NMDA受体)运输,这两者对于谷氨酸介导的兴奋性毒性都是必不可少的。SNAP23和SNAP25具有较高的同源性,SNAP23被证明可与膜联蛋白A7(ANXA7)相互作用。现分享一篇体内转染(Entr …
阅读更多 »体内转染(Entranster)与病毒性心肌炎治疗研究
柯萨奇病毒是病毒性心肌炎,胰腺炎和无菌性脑膜炎的重要病原体,但没有具体的抗病毒治疗试剂的临床应用。RNA干扰技术可防止病毒感染。现分享一篇运用体内转染方法(Entranster-in vivo)研究治疗病毒性心肌炎的文献,以供参考。
阅读更多 »体内转染(Entranster)与脓毒症相关急性肺损伤研究
脓毒症是一种危及生命的疾病,其特征是器官功能不全。脓毒症被广泛认为是由于感染引起的代偿性抗炎反应和全身炎症反应之间的平衡不稳定。在严重的情况下,炎症、脓毒症可导致急性肺损伤(ALI),更严重地可能会发生急性呼吸窘迫综合征(ARDS)。现分享一篇体内转染(Entranster-in vivo)与丹酚酸B和脓毒症相关急性肺损伤研究的研究,以供参考。
阅读更多 »体内转染(Entranster)与大鼠神经细胞凋亡和神经功能受损研究
创伤性脑损伤(TBI)是导致年轻人死亡的主要原因,具有高死亡率和发病率。在TBI期间,神经元细胞死亡不仅是导致神经功能缺损最重要的因素,也是严重影响颅脑损伤患者的生活质量的一个关键因素。现分享一篇体内转染(Entranster)与大鼠神经细胞凋亡和神经功能受损研究的文献,以供参考。
阅读更多 »体内转染(Entranster)与肺癌细胞凋亡研究
肺癌是最常见的恶性肿瘤之一,是全世界范围内恶性肿瘤死亡原因的首位,非小细胞肺癌约占肺癌病例的80%。肺癌被认为是一种遗传疾病,内源性致病基因的异常表达导致基因组的不稳定性,从而增加癌细胞的运动性和侵袭性。尽管可以成功治疗原发性恶性肿瘤,但仍有四分之一以上的患者在术后复发和远处转移。现分享一篇运用体内转染(Entranster-in vivo)的方 …
阅读更多 »小鼠体内转染实验,用滴鼻的方式,如何观察液体在肺部的分布
用染色的方法通常是比较简单的方法。具体来说,包括以下几种: 1. 荧光染色 原理:使用荧光染料标记液体或溶液。滴入小鼠鼻腔后,液体会通过呼吸道和其他相关通道传播,标记的染料可以通过特定波长的光激发并发出荧光,从而帮助你定位液体的分布。 优点:可以实时观察染色液体的流动和分布情况,并利用荧光显微镜等设备进行成像。 常用染料:如荧光素钠(fluorescein …
阅读更多 »体内外RNA转染(Entranster)与sirtuin3和肾缺血再灌注损伤研究
缺血再灌注(I/R)可引起急性肾损伤,其特征是增加活性氧(ROS)和线粒体损伤,并破坏肾小管上皮细胞的细胞极性、细胞骨架完整性和细胞基质和细胞-细胞相互作用。线粒体蛋白sirtuin 3(SIRT3)可能有助于减轻或预防I/R损伤。SIRT3过表达有助于恢复急性肾损伤模型中线粒体的动态变化。但关于SIRT3是否能够及如何减轻I/R引起的急性肾 …
阅读更多 »