新冠爆发以来,mRNA疫苗的研发一直都受群众热议,尤其是Delta变异株的出现,让大家更是期盼国产mRNA疫苗早日上市。而从疫情爆发到现在接近两年,直到最近才有即将上市的消息传出,为什么国产mRNA疫苗的研发如此艰难呢?
实际上,mRNA疫苗的研发主要包含两个核心技术:1.抗原的设计2.递送系统的设计。相对于抗原设计来说,递送系统更是难以突破的关键。
mRNA是带有负电荷的长单链,它的每一个特性都衍生出一个技术难题。首先,由于细胞膜表面也带负电荷,两者相遇后产生的静电排斥使mRNA较难直接穿过细胞膜进入到细胞内。其次,mRNA是单链,非常脆弱,很容易被体内的各种酶降解。再者,mRNA是条长链,结合前两者特性,也就更难进入细胞了。
所以,mRNA 疫苗最重要的一步是如何把它包裹起来不被降解,并成功与细胞膜融合进入细胞。这是 mRNA疫苗的核心技术之一,也是极少公司掌握的一项技术。现在各大公司技术上拼的就是怎么包裹mRNA 序列的工艺。
脂质体纳米粒(LNP)是目前mRNA疫苗的主要非病毒递送系统,其关键辅助是可电离阳离子磷脂。但纳米结构非常复杂,需要多种成分组成,并且每个成分都会影响到结构特性,在使用过程中,如果混合不正确,会很大程度上影响效果,所以调整各成分比例也是一件需要反复试验的事情。
此外,以LNP为载体制备的mRNA制剂靶向性较弱,容易在肝脏及脾脏聚集。由于LNP的潜在应用限制,载体传递技术仍需要更深入的探究。
事实上,递送系统也就是我们所说的动物体内转染,这项技术不仅可以在肿瘤和传染病疫苗中使用,也可以用于动物体内的RNA干扰、基因过表达等实验。利用动物体内转染试剂,将siRNA、shRNA、miRNA-mimic或inhibitor等转染到动物体内,实现体内的RNA干扰。这项技术相比以往的病毒感染和基因敲除技术,能很大程度上避免实验风险,并将基因敲除或基因过表达的实验周期从3-6个月缩短到3-6天,实验经费呈10倍的减少,有力推进实验进程。